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ABSTRACT
The clinical treatment of sepsis is one of most severe issues in hospitals. Unfortunately, until now it has not 
been possible to significantly reduce the mortality rate of severe forms of sepsis like septic shock, which is 
as high as 50-60% worldwide. Often, the diagnosis and awareness for possible implications of sepsis can 
be facilitated by an automated online diagnosis. This contribution reports the development of a monitoring 
alarm system for the individual prediction of death based on the data of 382 patients with septic shock. The 
paper discusses the pros and cons of such a prediction system used in a medical environment, its principal 
usage issues and implementation.
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1. INTRODUCTION

The infection of men by pathogenic organisms 
in the bloodstream occurs in 1–2% of all hospi-
talizations and accounts for as much as 25% of 
Intensive Care Unit (ICU) bed utilization. The 
clinical treatment of sepsis is one of most severe 
issues in hospitals and is managed by several 
strategies. Nevertheless, more severe forms of 
sepsis, i.e. septic shock which occurs in about 
5-7% of all septic cases are very difficult to 
handle and lead often to multi-organ failure and 
to death which is as high as 50-60% worldwide. 
Unfortunately, until now it has not been possible 
to significantly reduce the mortality rate of septic 
shock. Therefore, early treatment of complica-

tions in septic shock supported by an online 
prediction alarm system is an important issue 
in the hospital routine. In contrast to Personal 
Emergency Response Systems (PERS) which 
are triggered by the push button alarm of the 
person wearing a wireless transmitter, the ICU 
patients often are not aware of their state and 
do not have the possibility to push a button in 
the emergency case.

Therefore, the surveillance and alarm trig-
ger of an automatic system is desirable. For 
this purpose, there do exist many alarm trigger 
established in the pulse monitor, respiration 
monitor, and other physiological devices. Un-
fortunately, due to the high number of different, 
not integrated devices the number of false alarms 
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is very high. In a study in the John Hopkins 
Hospital, Baltimore (Cvach et al., 2012), they 
counted 771 alarm conditions per bed per day in 
the ICU. For instance in the case, of 157 apnea 
alarm conditions, 90% were thought to be false, 
for example, apnea alarm signals coming from 
patients on ventilators. Such frequent alarming 
causes desensitization due to a “cry wolf “effect. 
Most nurses don’t know all of the ways that the 
alarm system can be customized to individual 
patients. They concluded that a coordinated, 
continuous effort is necessary for the staff in 
order to integrate all devices into a coordinated 
alarm system and set up and tune their alarm 
conditions to the appropriate case. By this, they 
managed to reduce the false alarms by 30%.

How can an alarm system be build which 
integrates the most valuable signals, can be 
adapted to the actual needs and has a minimal 
number of false alarms? This contribution 
describes the foundations, development and 
application issues of a septic shock alarm sys-
tem which is able to predict death three days 
in advance individually. It is based on the data 
base of the MEDAN project (Hanisch, Brause, 
Paetz, & Arlt, 2011) of 382 patients out of 582 
with septic shock (Hanisch et al., 2003). The 
data were collected in 102 German hospitals 
from 1998 to 2002. All handwritten patient 
records were transferred to an electronic da-
tabase afterwards by a huge amount of man 
power to a consistent electronic database of 2.5 
million data. We used programmed range and 
plausibility checks of different kinds to detect 
all faulty data in the electronic database. For 
this, static values (e.g. lower and upper bounds) 
and dynamic development (e.g. time sequence 
behavior) were checked (Paetz et al., 2004).

2. THE ALARM SYSTEM

The goal of the data analysis was the develop-
ment of a prediction system for the individual 
mortality prognosis. Such systems can be used in 
the emergency case or for advances in treatment 
by automatic state monitoring. In our case, the 
analysis goal was two-fold: first, we liked to 

trace back the causes and influences of several 
clinical variables like coagulation or thrombo-
cyte level to the patient outcome, and second, 
we aimed to build an alarm system which rings 
an alarm as soon as a bad state is reached. In 
this contribution, we focus on the latter case.

The main problem for a medical alarm 
system is the availability of data. Unfortunately, 
there is no clinical standard for bedside monitor-
ing or patient data bases in Germany. For this 
reason, for our analysis of septic shock (which 
is a rare event) we had to initiate a multi-center 
study and concentrated on those 140 variables 
only, which are currently available in clinical 
routine. All gene tests or other special features 
were practically out of reach.

The next problem after obtaining the data 
is the question: What kind of analysis system 
should we use? It is well known that most 
metabolic processes are non-linear. Therefore, 
the usage of all linear methods like correlation 
analysis is not adequate. Instead, we used the 
method of formal neural networks.

3. THE NEURAL NETWORK 
ALARM SYSTEM

It is well known that artificial neural networks 
can approximate every arbitrary function as 
close as desired (White 1992). Here, a two-layer 
network is sufficient. The main architecture is 
shown in Figure 1(a). As real valued input, the 
clinical variables are used. The output consists 
of two variable DEATH and ALIVE. Only one 
of these two outputs becomes exclusively TRUE 
depending on the maximum.

For the discrete choice of the network, 
both design choices have to be made: Which 
activation function and which learning function 
should we choose? Both decisions imply deep 
consequences for a network.

As activation function of the first layer 
neurons, a Radial Basis Function (RBF) S1(|x-cj|) 
was chosen. For an input variable x, this function 
decreases monotonically with the distance from 
a center c. Here, it becomes only one (true) if 
the input represents a point which falls within 
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a certain interval in the neighborhood of a state 
c, see Figure 1(b). In detail, our RBF activation 
functions consist of an interval [β1,β2] (core 
region) where S(z) = 1 and an interval [α1,α2] 
(support region) where at least S(z) > 0. Thus, 
the j-th trapezoidal function of z might be:

S1(z) = 
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or purely rectangular:
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A trapezoidal function can be seen like a 
fuzzy membership function where the function 
value varies between S(z) = 0 FALSE and S(z) 
= 1 TRUE. Contrary to classical logic, also 
values between those two (less or more TRUE) 
are possible. This can easily be used to transfer 
vague ideas and values of medical diagnosis 
from the doctors to the diagnostic system (the 
RBF network) and the results from the network 
to the doctors, describing the results in vague, 
medical terms like slightly raised glucose level, 
see Brause & Friedrich (2000). All human as-
sumptions are formulated as rules and fed into 
the network; all network results are output and 
interpreted as rules. This formalism enables 
doctors to enter medical knowledge directly 
into the learning system and let the system 
output its results in medical terms which are 
better understood by them.

The input selection in our network is done 
by trapezoidal (RBF) functions of the first 
layer which cut out a certain area of the input 
space. The combination of several trapezoidals 
S1(|x-cj|) gives the output of the second layer. 
Formally, the input-output function of the net-
work for the i-th output yi is given by:

Figure 1. (a) The 2-layer architecture; (b) Activation functions of the first layer
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In the simple case, the activation function 
is linear:

S2(z) = z	

As learning algorithm for this network 
(Brause, Hamker, & Paetz, 2002) we used a 
variant of an algorithm (Huber & Berthold, 
1995), developed by Paetz (2001). In our case, 
after training of the network we obtained 1284 
rules for decease like:

IF organ_failure = YES
AND antiarrythmics = YES
AND haemodialysis = YES 
AND peritoneal_lavage = YES
THEN class_deceased
WITH confidence = 0.8
AND frequency = 0.03

and 9976 rules for survival like:

IF peritoneal_lavage = NO
AND thrombocyte_concentrate = NO
AND haemodialysis = NO
THEN class_survived
WITH confidence = 0.98
AND frequency = 0.42

For an automatic computer diagnosis, this 
is ok, but it is difficult to compute all values in 
parallel manually.

4. THE SCORING 
ALARM SYSTEM

Although our neural network performed well for 
the task of death prediction, the neural network 
alarm system is not well accepted by medical 
persons. This non-rational fact is related to a 
more general human background: All doctors 
feel their profession as a kind of art; themselves 

they feel like artists. So, technical systems can 
only be accepted by doctors as (dump) assistance 
giving hints, not as valid diagnosis and never 
as prescription. For this, the medical diagnosis 
is disguised as a dummy alarm system, not as 
a profound diagnosis.

Additionally, the doctors want to under-
stand the reasons for the alarm. Therefore, the 
first step was an output of the neural network 
system which can be understood very easy: the 
formulation as rules. This is good, but not pref-
erable, because it needs a computer running the 
neural network application. In contrast to this, 
doctors are used to compute health indicators, 
called “scores” manually.

4.1. Neural Networks 
and Medical Scores

There are many famous medical scores used to 
predict the health of a septic patient: the SOFA 
(Sepsis-Related Organ Failure Assessment) 
score (Vincent et al., 1996,1998) which uses 
12 different variables, the APACHE II (Acute 
Physiological and Chronic Health Evalua-
tion) score (Knaus et al., 1985), using a scale 
of 0 to 71 of whole-number values based on 
12 partial variables, the SAPS II (Simplified 
Acute Physiology Score) score of 15 variables 
(Le Gall et al., 1993), and the MODS (Multiple 
Organ Dysfunction Score) of only 6 variables 
(Marshall et al., 1995). All scores are computed 
by the same procedure: Using a weight table 
the doctors take the appropriate weights for the 
patient state variable values from the table and 
add them together to a score. The final score 
is then put into another table which maps the 
score to the patient’s health state prediction.

Certainly, in order to propagate the usage 
of our results we should make it also available 
as a scoring system. But - how can we obtain 
our diagnostic networks results by a simple 
system like this? The solution comes up when 
we take a closer look to the scoring procedure 
and compare it to the neural network activity.

For computing a score, we have first to 
determine in which interval a measured variable 
falls, then assign a partial score value to it and 
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then add all the values of the different partial 
scores together to the final score. We might 
mathematically formulate this by defining a 
function S(x) to be one within the j-th interval 
[β1j, β2j] if the measured value falls within the 
interval boarders β1j and β2j:

Sji(xi) = 
1

0
1 2
β β
ji i ji
x
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and assign as score value the weight wj to it. 
By multiplication, the i-th partial score value 
becomes:

Partial score w S x
j ji i

= ( ) 	

As example the SOFA variable xi =“Bili-
rubin” with its associated score values wji is 
shown in Figure 2.

Then the final score value is computed 
as sum of the partial scores only where Sji =1:

Score = w S x
ji ji i

ij

( )∑∑  = w S x
ji ji i

i

( )∑  (2)

using the variables xi and their corresponding 
interval weights wji defined on each variable. 
Comparing the two expressions (1) and (2) we 
notice that they are formally equivalent under 
the condition that the activation functions Sji(.) 
of the neural network is identical to the interval-

shaping functions Sji(.) of the scores. Thus, the 
scores can be seen as “score networks” and are 
special cases of trapezoidal networks which 
in turn are special cases of general artificial 
neural networks.

But scores and neural networks are not the 
same. In difference to scores which are stati-
cally defined and do not change, neural network 
parameters like weights are supposed to change. 
Special learning algorithms adapt the weights 
such that the network diagnostic performance 
becomes maximal in difference to the scores 
which are defined manually once by statistical 
and consensus considerations.

Now, given an optimally trained neural 
network, how can we construct the correspond-
ing score?

4.2. Generating a Medical Score

The neural network obtained by training has two 
differences to the desired “score network”: First, 
it contains many rules which are concurrently 
active, and second, it is based on trapezoidal 
basis functions, not on rectangular ones. Thus, 
in order to construct a score, we have to reduce 
the number of rules, i.e. the number of intervals 
of a variable, and they should not overlap. Ad-
ditionally, all concurrently active rules have 
to be mapped to a single rule for one interval 
producing just one partial score value.

There is no canonical procedure for this 
mapping task. Therefore, we applied a random 

Figure 2. The output function weights of the thrombocythes SOFA variable
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mapping scheme with selection to this problem: 
a genetic algorithm. For the algorithm, a possible 
solution is represented by a tuple of interval 
boarders and number of intervals per variable. 
Starting with a set of random solutions (geno-
types) the performance (fitness) of each solution 
can be obtained by using the score computation 
(phenotype) on the set of training samples and 
computing the score performance, see section 
5. The best solutions can be selected, mutated 
and tested again. This process is visualized in 
Figure 3.

After the generation of 360 mutations and 
selections a score network was obtained (Paetz 
2003) which did not change in several training 
sequences.

By our neural network analysis, we identi-
fied the systolic and diastolic blood pressure/
thrombocytes system as the most relevant 
variables for outcome prediction (Paetz & Arlt 
2002). For clinical practice, the good perfor-
mance of the neural network can be obtained by 
the MEDAN RRT score of the three variables. 
This score network can be described like an 
ordinary score by a table, see Table 1. It uses 
only three observed variables: the systolic 
blood pressure, the diastolic blood pressure 
and the concentration of thrombocythes. The 
values of the three variables systolic blood 
pressure RRsys, diastolic blood pressure RRdia 
and the amount of thrombocytes Thromb listed 
in the table are each assigned to a single score 
value. The total RRT score is obtained as sum 
of the three values. Using this score, we might 

demonstrate the alarm system. Please note that 
higher values are associated with a less critical 
state of the patient.

By this definition, we get the following 
classification rule: “if RRT-Score < 6 then 
deceases“ or „if RRT-Score ≥ 6 then survives“. 
The new score can be easily implemented by a 
small piece of software which might be added 
to standard patient bedside monitoring devices. 
A pseudocode example of the necessary alarm 
software for computing the death prediction is 
shown in Figure 4.

The blood pressure can be monitored con-
tinuously, while the thrombocythe values have 
to be updated manually.

5. ALARM SYSTEM RESULTS

The performance of a new alarm system has 
to be compared with traditional approaches. 
As performance measure, we do not use the 
probability of successful diagnosis, because 
it does not include the characteristics of the 
diagnostic system at different working points 
(different thresholds and other parameters), but 
the resulting receiver operation characteristic 
(ROC) with its area under curve (AUC) value. 
Random diagnosis have an AUC of 0.5; in 
medicine, for an acceptable, serious diagnosis 
system the AUC value have to be higher than 0.8.

Figure 3. The iteration process of the genetic algorithm
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5.1. The Performance Evaluation

For the neural network diagnosis, we get an 
AUC of 0.88. The metric variables hold most 
of the diagnostic information: After adding 
qualitative variables like treatment or medica-
tion the diagnosis augmented only slightly from 
AUC = 0,90 to 0,92 for a subset of 138 patients.

In the MEDAN score, the border between 
the two classes is very sharp: patients with 5 
points have a mortality of 68.3% whereas only 
19.8% of the patients with 6 points died. Thus, 
patients with a score near the border should be 
observed with special care.

In order to compute the score, the three 
score values have to be summed up. The 
threshold is θ = 6: For a sum greater or equal 
to 6 the outcome prediction is favorable (85,7% 

correctly classified as “survived”), otherwise 
severe problems will arrive. In our experience, 
patients who stay several days below a score 
of 6 have a high probability to die. In Table 2, 
this is shown by the mortality associated to the 
score ranges.

How does the new score perform generally 
in comparison to the other standard scores used 
in ICUs? For a comparative analysis of the new 
MEDAN score we evaluated the traditional 
scores on our data. For our analysis, a score 
was calculated every time when the necessary 
variables were given without considering the 
Glasgow Coma Score (GCS). The GCS was not 
included in the scores since it was not always 
available for our data.

With an AUC = 0,89 the performance 
of the MEDAN score differs not much from 

Table 1. The new MEDAN RRT score 

Score 0 1 2 3 4 5 6 7 8

RRsys ≤119 >119 >151 >221 >251 >265 - - -

RRdia ≤ 42 > 42 > 47 > 49 > 64 > 83 > 117 > 121 > 126

Thromb ≤112 >112 >202 >312 >371 >621 >770 - -

Figure 4. Example pseudocode of the alarm system
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the MEDAN neural network performance. 
Therefore, we might compare it directly to the 
other established scores. If we compare the 
diagnostic performance of the MEDAN score of 
our patients to their SOFA score (AUC = 0.89), 
their MODS score (AUC = 0.88), their SAPS 
II score (AUC = 0.85) and their APACHE II 
score (AUC = 0.79) we see that the classification 
power of the new score is equivalent or better, 
using much less variables (information) than 
all other scores.

We notice that the MEDAN RRT score is 
as performing as the best by experience-evolved 
score, the SOFA score. We might interpret that 
as if we short-cut the evolution of our score by 
an evolutionary algorithm based on the avail-
able data.

5.2. The Prediction Epoch

After selecting relevant variables for predic-
tion, we have to determine the time period 
of the samples to analyze. This comes up to 
the question: Is the fate of the patient already 
determined after entering the ICU? At what 
day of the stay can we make valid predictions 
about the outcome? Is the outcome determined 
by the first three days of the stay? Or the first 
half of the stay? Or the second half of the stay? 
Or the last three days? For all the time periods, 
we analyzed the performance of all scores. An 
alarm message is given whenever input for the 
neural network generates high output for class 
“deceased.” In Figure 5 we see the resulting 
alarm percentage for the first three days, for 
the first and second half of ICU stay and for the 
last three days, indicated separately for patients 
who either deceased or survived.

We can clearly see that predictions of the 
MEDAN score based on the start of the ICU stay 
are not reliable (AUC = 0.52) and are close to 

an arbitrary random decision. This is also true 
for the AUC of all other scores: SOFA = 0.54, 
APACHE II = 0.52, SAPS II = 0.52, MODS = 
0.52, neural network = 0.52.

The usage of the score is not limited to 
the last three days: A bad score indicates a bad 
situation for the patient “as if he or she is in the 
state of being in the last three days before death” 
whenever the score is computed. Comparisons 
of individual histories and computed scores 
showed good correlations for the whole ICU 
stay. Only the 7% alarms stemming from the 
last three days can be interpreted as false alarms 
with respect to outcome prediction.

6. DISCUSSION

Most clinicians can recognize septic shock, but 
if you ask them, you get a hundred definitions 
(Rowe 1999), although consensus conferences 
should have resolved this issue (Levy et al., 
2003). Different scoring systems have been 
developed, not only in order to document sever-
ity of illness, but also to estimate prognosis of 
critical ill patients. The best outcome predictor 
would be one that warns the physician on first 
day of ICU admission or when septic shock first 
appears (this is usually the second day of the 
patient’s ICU stay according to our analysis).

Our results demonstrate that none of the 
scoring systems achieves this goal. Only in 
the last three days of the ICU period, scores 
reach acceptable AUC values, where by the 
SOFA score, based on ten variables, achieves 
the best AUC of all scores, together with the 
neural network and the MEDAN score which 
uses only three variables.

Does the failure of scores and of the neural 
network imply that it is impossible to predict 
the future state of the patient in advance than 

Table 2. Mortality related to MEDAN score ranges 

MEDAN RRT 
Score 0..2 3..5 6..9 10..13

Mortality 98.41% 81.65% 13.68% 1.89%
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three days? Is it principally not possible to build 
an better alarm system? The answer is “No”: 
We do not know whether a better prediction is 
possible for a certain subgroup of all patients, 
e.g. a group discriminated by a gene test. Or, 
other kinds of patient data may be available in 
future which may give better results.

Our main claim is that, given the standard 
patient data, there is no better alarm system pre-
diction possible. Regarding Figure 5 we might 
even argue that after the first three days during 
the stay the fate of the patient is not determined. 
The decision seems to come only at the end of 
the stay: either by recovery or by death.

The resulting alarm system based on our 
analyses produces reliable alarms: in the last three 
days of the ICU stay there were ten times more 
alarms for deceased patients then for survivors. 
The alarm system that was trained with data of the 
last three days represents the patient conditions that 
lead to death or survival with a high probability. 
Only false alarms (7%) stemming from the last 
three days can be interpreted as “false alarms” 
with respect to outcome prediction, because on 
the other days one cannot retrospectively examine 
if the alarms are due to critical or uncritical states 
which might occur independently. Alarms in previ-

ous periods for survived patients might have not to 
be false; they can be seen as indicators for critical 
periods of ICU stay. Although the alarm system 
was trained with data of the last three days, it can 
be used as an online bedside alarm system. Right 
from the start of the patients’ ICU stay physicians 
are warned when patients reach the same critical 
condition as deceased patients had within the 
last three days. If the patient is critical on his/her 
first day of ICU stay, the alarm system warns the 
physician, whether the patient will likely survive 
or die in the following days. If peripety happens 
later on, the alarm system will warn the physician 
at the right time.

Certainly, the bedside alarm application of 
the proposed alarm system is not dedicated to the 
direct use for the patient. It is a tool showing the 
involved probabilities; a not interpretive usage 
might only lead to fatalistic or euphoric behavior 
without a benefit for the patient. Therefore, in 
clinical practice the system should be regarded 
as a watch dog function and be integrated into 
other intensive care software. In this context it 
will serve as another indication for the supervis-
ing doctor, either causing additional diagnostic 
or treatment steps or confirming them.

Figure 5. MEDAN score alarms for different time periods
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